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Abstract

Particle Swarm Optimization (PSO) is a very popular population based heuristic search algorithm for
optimization developed by Eberhart and Kennedy in 1995(Kennedy et al., 1995), usually requires a large
number of fitness evaluations to reach the global optima. The PSO algorithm is easy to implement and has
been proven to be very competitive for solving diverse global optimization problems including both
benchmark and real life optimization problems in comparison to conventional methods and other meta-
heuristics. In this paper we have proposed an improved particle swarm optimization algorithm named a
Random Search Quadratic approximation Particle Swarm Optimization (RQPSO) algorithm tested on 15
non scalable nonlinear benchmark optimization problems taken from literature and having a number of
local as well global optimal solutions. The experimental results show that the proposed algorithm
improves its performance in terms of used number of function evaluations (AFE), rate of success (SR),
average error(AE) and standard deviation of error(SD).

Keywords - Standard Particle Swarm Optimization (SPSO), Random Search Quadratic approximation
PSO (RQPSO), Non Scalable Optimization Problems.

Introduction

Particle Swarm Optimization (PSO) is a heuristic optimization technique introduced by Kennedy and
Eberhart in 1995(Kennedy et al., 1995). It is inspired by the intelligent, experience-sharing, social
flocking behaviour of birds that was first simulated on a computer by Craig Reynolds (Reynolds, 1987),
and further studied by the biologist Frank Heppner (Reynolds and Grenander, 1990). PSO is a
population-based search strategy that finds optimal solutions using a set of flying particles with velocities
that are dynamically updated according to their historical performance, as well as their neighbours in the
search space (Shi, 2004).PSO solves problems whose solutions can be represented as a set of points in an
n-dimensional solution space. The term 'particles’ refers to population members, which are
fundamentally described as the swarm positions in the n-dimensional solution space. Each particle is set
into motion through the solution space with a velocity vector representing the particle's speed in each
dimension. Each particle has a memory to store its historically best solution (i.e., its best position ever
attained in the search space so far, which is also called its experience).

Some of the important features of PSO include ease of its implementation and none of any gradient
information is required for it. In PSO, solution space of the problem is called a search space and each
position in the search space is known as a potential solution of the problem. Particles target to find the best
position (i.e. best solution) in the search space i.e. in the solution space. For a n- dimensional search
space, the position of the position of the with particle is denoted as X, = (x;,,X,,,......X;,) Each particle

maintains a memory of its previous best position pi= (pi1, pi,....... in). The best particle (i.e. the particle
which gives the best fitness value) among all the particles in the swarm is denoted as P, = (P50 gy Pyy)
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and the velocity of each particle in the swarm is denoted by V; = (v;;, Vi 5o ¥;,)

The two basic equations in the working of the standard particle swarm optimization (SPSO) algorithm are
the velocity and position vectors which are given as

v(t+1)=

inertial

weight cognitive social

component component component

—_—— —_——— A —_——— e

wv, (0) + e, [p,(6) = x, (O] + ¢,r, [P, (1) = x, (O 1) X (1) = 25,(0) + V(24 Deveoes s v (2)

Where 1< swarm (i) < S, 1 <dim( D) < n

Equations (1) and (2) respectively are termed as velocity and position update equations in standard

particle swarm optimization (SPSO).

In these equations (1) and (2),x’ (®) is the position of the with particle at any time t, vi(?) is the velocity of

the with particle at time t, p, (t) is the best position found by the with particle itself in the swarm so far,
p,(t)is the best position found by the whole swarm so far. The inertia weight w and the acceleration
constants ¢, and ¢, (Shi and Eberhart, 1998) are predefined taken from the literature by the userand , & r,
are the random numbers uniformly generated in the range of O and 1.

The three terms in equation (1) described as:

(i) The first term is the current speed of the particle which shows its present state and has the ability to
balance the whole swarm and search a local part.

(i) The second term in equation (1) is called the cognitive component here which shows the thought of
the particle itself and causes the swarm to have a strong ability to search the whole swarm and avoid a
local minimum.

(ii1) The third term is known as the social component which shows the information sharing among the
whole swarm and among the particles (i.e. solutions) which are known to be near to good (i.e. best)
solutions. With the help of these three terms, the particles can reach to an effective and best position.

If we assume that the optimization problem is of minimization, then in SPSO how the personal and the
global best values are updated at the time trespectively are given as

p,(t+1)=
{pi(t), whenflp, (0] < Lx,(:+ )] } _______ 5
x;(t+1), whenf{p, ()] > flx;(z +1)]
Pt +1)=min{f (), fp, (O }orrorren. )
where  y €[y (6), (1), P2 (05, (0)]
ARandom Search Technique with Quadratic Approximation

N.H. Thanh and C. Mohan (Thanh and Mohan, 1996) determined a new trial point p in the manner of a
'Control Random Search Technique for Global Optimization using quadratic approximation'(Mohan and
Shankar, 1994). In this random search technique we choose

LF(B)®? ~b2)+ f(B,)(B} ~b7)
5L @O 5] )
L/ (b)(B; =b,)+ fB)(b, ~b)
+ f(B)(b,~b,)]

Where p gives the extremal point of the quadratic curve passing through the points b, b,and b,.
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The Proposed Algorithm

Kusum Deep and J.C. Bansal (Deep and Bansal, 2009) proposed an algorithm named Quadratic
approximation Particle Swarm Optimization (qPSO) in which the hybridization of PSO is performed
with Quadratic Approximation operator (QA), by splitting the whole swarm into two sub swarms in such
a way that the PSO operators are applied on one sub swarm, whereas the QA operator is applied on the
other sub swarm, ensuring that both sub swarms are updated using the global best particle of the entire
swarm.

The proposed algorithm in the present paper is a hybrid of the standard particle swarm optimization
(SPSO) algorithm (Maurice,2006) and a random search technique with quadratic approximation
formula (Mohan and Shankar, 1994) named Random Search Quadratic approximation Particle Swarm
Optimization (RQPSO) algorithm. In this proposed algorithm, a probability say having a certain value
provided by the user has been fixed. In every iteration, if the uniformly generated random number r(0,1) is
less than that value , then the velocity vector is generated by the equation (1) of standard PSO algorithm
otherwise it is generated by equation (5) of random search technique with quadratic approximation
formula (Mohan and Shankar, 1994).

The flow of the proposed algorithm is as under:
BEGIN:

Create and Initialize an n-dimensional swarm S
{x,(t) : =1to S} uniformly between 0 and 1.

Assign w some value between 0.4 to 0.9 and
set ¢,and ¢,=2.0.
Fori=1to S,
For d=1 ton,
Assign some value to P between 0 and 1.
Ifr(0,1)< P ,then
generate velocity vector using equation (1) of
standard PSO algorithm,
else generate it using equation (5) of controlled
random search with quadratic
approximation formula (Mohan and Shankar, 1994) .
Calculate parti cle position as
x,(t+)=x,(t)+v,(t+1)
End- for-d;
Compute fitness of updated position; if needed,
update historical information for P, and P,
End-for-i;
Terminate if P, meets problem requirements;

END
Performance Testing Criteria and Setting of Parameters

Successful Runs: A run in which at least one solution is discovered with error tolerance 0.001.
AFE: Average number of function evaluations for successful
runs.
SR = Success Rate
= (No of successful runs (NR) /Total runs)*100.

55



VIVECHAN International Journal of Research, Vol. 6, Issue 1, 2015

=% age of successful runs to total runs.

Z (fmin - fopt)

n

AE = Average Error =
NR

Where NR is the number of runs.
SD: Standard deviation of the error.

Table 1 : Parameter Settings.

ISSN No. 0976-8211

S.N Parameter Symbol Value
1. Swarm Size SS Normally=(5-10)*DD: Dim ension
2. Max no . of function evaluation s MFE 50000
taken
3. | Max no of function evaluation s AFE Pb wise given in the table no 4 of results
used
4. | Number of runs NR 30
5. | Inertia weight W 0.4t00.9
6. | Acceleration Coeft . ¢, C, ¢ =c,=2
7. | Error tolerance € 0.001
8. Processor Intel Dual Core
PC Configuration RAM 2 GB
Operating Windows XP
System
Software used C++/Visual Studio
Random numbers are generated using inbuilt rand () function for the algorithm.

Results and Discussion

The acceleration factors C, and C, equals to 2 are used here, however the other settings were also be used
in the literature but C, and C, are equals usually and ranges from 0 to 4 (Shi and Eberhart, 1998). The
swarm size i.e. number of particles we used here (5 to 10)* dimension. There is no any hard and fast rule
for it. For most of the problems 10 to 50 particles are large enough to get good result. For solving all the
benchmark problems in this research paper a C++ code has been developed and compiled in Microsoft
visual C++compiler and the datarecorded as per the tables 3 to 6 given in this section.

Conclusions

In the present research paper a modified particle swarm optimization algorithm named Random Search
Quadratic Approximation Particle Swarm Optimization (RQPSO) algorithm has been proposed and
tested on 15 benchmark non scalable nonlinear optimization problems taken from the literature and
having number of local as well as global optimal solutions. Results are compared with a, Hybrid PSO
(HPSO) (Deep and Bansal, 2009) and it has been observed that the proposed algorithm improves its
performance in terms of the average number of function evaluations, success rate, average error and
standard deviation in most of the cases.
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Table 2 : List of Benchmark Problems.

PbNo Problem name Range Sof Min(f)

1. Easom 2D 9] [-10,10] -1

2. Becker and Lago [10] [-10,10] 0

3. Aluffi-Pentini’s [11] [-10,10] -0.3523

4. Wood’s [9],[12] [-10,10] 0

5. Miele and Cantrell [12] [-1,1] 0

6. Bohachevsky 1[13] [-50,50] 0

7. Bohachevsky 2 [13] [-50,50] 0

8. Branin [14] [-5,101],[0,15] 5/(4m)

9. Eggcrate [15] [27m 27 ] 0

10. Modified Rosen.[ 10] [-5,5] 0

11. Periodic[10] [-10,10] 0.9

12. Powell’s [12] [-1.4] 0

13. Camel Back -3 Hump [-5,5] 0
Problem[14]

14. Camel Back -6 Hump [-5,5] -1.0316
Problem [14]

15. McCormick Problem [16] [-1.54], -1.9133

[-3,3]

Table 3 : Comparison of RQPSO with SPSO and HPSO in terms ofrate of success (SR)(%).

PbNo SPSO HPSO RQPSO
1(0,1)<0.4 r(0,1)<0.1
1. 100 100 100 100
2. 100 100 100 100
3. 100 100 100 100
4. 100 100 100 100
5. 100 100 100 100
6. 100 100 100 100
7. 100 100 100 100
8. 100 100 100 100
9. 100 100 100 100
10. 60 67 60 70
11. 75 86 100 100
12. 100 100 100 100
13. 100 100 100 100
14. 100 100 100 100
15. 100 100 100 100
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Figure 1: Comparison of RQPSO vs SPSO and HPSO based on rate of success.

Table 4 : Comparison of RQPSO with SPSO and HPSO in terms of average number of function
evaluations (AFE) used.

Pb SPSO HPSO RQPSO
No 1(0,1)<0.4 1(0,1)<0.1

1. 508 548 2959 5854
2. 623 605 293 429
3. 426 409 341 403
4. 18754 17979 5416 10462
5. 226 223 254 376
6. 977 1071 2094 957
7. 1007 1065 1142 673
8. 514 591 346 394
9. 642 716 1395 816
10. 3360 2783 493 1620
11. 4665 2540 3010 2875
12. 1463 1463 2787 2564
13. 366 389 203 240
14. 590 443 346 367
15. 293 305 192 323
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Figure 2 : Comparison of RQPSO With SPSO & HPSO based on AFE.
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Table 5 : Comparison of RQPSO with SPSO and HPSO in terms of average error(AE).

Pb RQPSO
No SPSO HPSO
r(0,1)<0.4 r(0,1)<0.1
1. 0.000453 0.000459 0.000208 0.000137
2. 0.000474 0.000482 0.000436 0.000089
3. 0.000422 0.000442 0.000230 0.000263
4. 0.00096 0.000937 0.004085 0.000356
5. 0.000401 0.000343 0.000277 0.000361
6. 0.000511 0.000525 0.000399 0.000037
7. 0.000536 0.000516 0.000380 0.000204
8. 0.000476 0.000518 0.000441 0.000276
9. 0.000492 0.000526 0.000305 0.000256
10. 0.003211 0.002810 0.003273 0.002480
11. 0.010510 0.012548 0.000164 0.000122
12. 0.000652 0.000636 0.000724 0.000552
13. 0.000522 0.000453 0.000461 0.000442
14. 0.000608 0.000627 0.000422 0.000570
15. 0.000545 0.000563 0.000331 0.000509

Table 6 : Comparison of RQPSO with SPSO and HPSO based on standard deviation(SD) of error.

RQPSO
Pb SPSO HPSO

1(0,1)<0.4 1(0,1)<0.1
1. 0.000302 | 0.000277 0.000207 0.000250
2. 0.000276 | 0.000282 0.000324 0.000179
3. 0.000315 | 0.000295 0.000283 0.000286
4. 0.000060 | 0.000125 0.017242 0.085128
5. 0.000325 | 0.000302 0.000243 0.000342
6. 0.000297 | 0.000216 0.000394 0.000113
7. 0.000274 | 0.000287 0.000310 0.000277
8. 0.000286 | 0.000312 0.000317 0.000212
9. 0.000277 | 0.000285 0.000251 0.000265
10. 0.003331 [ 0.003240 0.003392 0.003244
11. 0.029833 | 0.032300 0.000228 0.029959
12. 0.000241 | 0.000264 0.000206 0.000258
13. 0.000292 | 0.000298 0.000181 0.000359
14. 0.000217 | 0.000213 0.000202 0.000241
15. 0.000253 | 0.000272 0.000262 0.000233
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Figure 3 : RQPSO vs SPSO & HPSO based on AE.

0.12
@ 0.1 I\
E 0.08 | SPSO
g [ \
g 0.06 HPSO
& o 1
-"E . l \ RQPSO(r<0.4)
S 002
s RQPSO(r<0.1)
72! 0

135 7 9 1113 15

Figure 3 : RQPSO vs SPSO & HPSO based on SD.
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