
Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

56

Biological Object Based Software (BOS): An Integrative Biological Programming Environment

Burra V L S Prasad*
Professor, K L University, Green Fields,
Vaddeswaram, Guntur, Andhra Pradesh -522502

*pburra@kluniversity.in

Received: 08.05.2019, Accepted: 20.05.2019

Abstract

The state of biological research is evolving and transitioning from static data/information-based
modelling approaches toward knowledge-based modelling of bio-dynamics. The biological complexity
involves various interlinked processes and products of evolution. The further layers of complexity
overlaid can be attributed to the dynamics and varied rates of changes to the known and emerging
parameters. Computational advancements and technologies are now inextricable part of today's
biological research helping the challenge of de-convoluting discovery and characterization of the
complex parameters. As a strategic step, last two decades has seen creation of huge data repositories
capturing as much data and information as possible. The next strategic step would be to develop
comprehensive and integrative methods to understand and re-construct the complexity in the most
reliable way which eventually will lead to biological applications.

Biological software has been co-evolving in parallel to the discoveries of the biological complexity.
Hence, there is huge scope and demand for more efficient biological software applications and tools,
especially post human genome sequencing. Biological Object based Software (BOS) - a biological
programming environment, is one such attempt to equip the researchers with seamless integration,
efficient extraction and effortless analysis of the data from various biological databases and algorithms,
be it genomics, structure analysis, literature mining or simultaneous use of all. Reusability, flexibility,
extensibility and integration have been the primary principles on which the software solution is designed
and developed. BOS has features that enable automation in implementing novel bio-computational
workflows, while reducing the time significantly.

Key words - Next generation sequencing, Biological Object based Software, Genomics, BioADT

Introduction

Today, on careful examination, based on the type of biological data the biological space is naturally
getting sub-classified into genomics (genome sequence data), transcriptomics (mRNA, EST, expression
data), proteomics (protein sequence, data), structural genomics (3D structure data), interactomics
(biological molecule interaction data), metabolomics (metabolite, substrate, and small molecule data),
fluxomics (data of rates of metabolic reactions in cell) and phenomics (organism phenotype data). Since
inception of bioinformatics, every attempt has been and is still being made to develop necessary
technologies in order to capture all the data and information pertaining to each of the above sub-classes.
This resulted in many technological innovations which led to huge databases and repositories and many

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

57

software applications / solutions (Galperin and Fernández-Suárez, 2012).

Next generation sequencing (NGS) technologies will continue to add sequence data at an unprecedented
rate challenging the existing computer infrastructure as well as software applications (Richter and
Sexton, 2009). It is the fastest growing and the most lucrative segment in the genomics space. These
technologies will revolutionize the medical research in academic laboratories, bio-pharma and the
applied markets influencing various fields of science such as cancer research, bio-fuels, marine sciences,
livestock research, agricultural and veterinary research. The global NGS market was valued at $842.5
million in the year 2011, growing at a compound annual growth rate of 22.7% from 2012 to 2016
(http://www.marketsandmarkets.com/Market-Reports/next-generation-sequencing-ngs-technologies-

6 market-546.html). The current size of biological data is approximated to be in Petabytes (10 Gigabytes).
12

With NGS in the offing, the total size is expected to surpass Zettabytes of data (10 GigaBytes) in next
five years. The solution that would address the issue discussed and other requirements seem to be to
design and develop an efficient biology specific data and knowledge sourcing platform which should be
comprehensive, flexible and inclusive.

Over the period of time, many software applications are developed covering various tasks, ranging from
simple automation scripts, data mining, curation, annotation, analysis, representation to automated
scientific publications and technical documentations. Further, these software applications range from
handling single/simple task to complex workflows/data flows. Based on the number of tasks and the way
the tasks being served, the software applications are being called by different names – a) the applications
which handle single task are generally referred as tools. For example: CLUSTALX (Larkin et al., 2007),
STAMP (Russell and Barton, 1992), MOLSCRIPT (Kraulis, 1991) and so on. b) The applications which
provide a common interface and enable the user to perform multiple tasks are being referred as
Integrative Analytic Platforms or embedded systems. For example: Tripos-Sybyl (www.tripos.com),
Accelrys-InsightII (www.accelrys.com), EMBOSS (Rice et al., 2000), CCP4 (Winn et al., 2011) and
others. c) There are other applications, generally referred as application programming interfaces (APIs),
such as BioJava (Holland et al., 2008), BioPerl (Stajich et al., 2002), BioPython (Cock et al., 2009),
Bio++ (Dutheil et al., 2006) and others. These are applications which encourage exploratory research
that gives researcher additional flexibility for analysis in addition to the existing predefined functions or
access to third party tools. In recent times, web based analytical platforms such as Mobyle (Neron et al.,
2009) and graphical workflow design systems are also being developed such as TAVERNA (Hull et al.,
2006), UGENE (Okonechnikov et al., 2012) and others. However, these attempts may be considered to
be at infancy with huge potential.

In the domain of computer science, object-oriented application frameworks (OOAFs) and domain
specific programming environments are considered as the cornerstones of modern software engineering
(Fayad et al., 1999). An OOAF is a domain specific, 'semi-complete'' application that can be specialized
to produce custom applications. The primary benefits of an OOAF stems from the modularity,
reusability, extensibility, and inversion of control they provide to developers. DENZO (Crystallography,
http://www.hkl-xray.com/), MATLAB (Mathematics, http://www.mathworks.in), GNUPLOT (graph
plotting, http://www.gnuplot.info/), R programming Environment (Statistics, http://www.r-project.org/)
are some of the highly successful programming environments in respective domains which take
advantage of these advanced software engineering designs/concepts.

BOS is an attempt to design and develop a biology specific comprehensive OOAF and a biological

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

58

object-based programming environment. Using BOS, the end user i.e., biologist will now be able to
organize and / or instruct computational queries with biological vocabulary (objects), in addition to
various other features, discussed below.

Materials and Methods

Current BOS architecture is two tiered. The core, referred as “BOS Kernel” executes the programming
instructions passed to it. The user interface layer (tier) wrapped around the Kernel is referred as “BOS
Editor”.

BOS Kernel

Object Oriented Paradigm (OOP) revolutionized the design and development of compilers and computer
programming languages hence improves the efficiency of software application development. Biology is
inherently Object Oriented. The concepts of OOP especially modularity, reusability and extensibility are
followed at almost all levels of life systems i.e., from molecules such as amino acids, nucleotides, DNA,
RNA, proteins through cells, tissues, organs to vast ecosystems. Each of these biological entities holds
certain data/information and a unique associated behaviour. This natural pairing of data with
associated behavior is considered a necessary condition to define an object in OOP. This principle, in
essence, enabled us to define various biological entities as biological objects, referred as Biological
Abstract Data types (BioADTs) and differentiates our design from the other applications in the segment.
The BioADTs are designed in order to be used as independent objects or 'is-like' / 'contained in' other
pertinent ADTs. This resulted in a collection of large number of BioADTs implemented as classes. The
col lect ion of a l l the c lasses resul ted in a comprehensive biological OOAF
(http://www.biobhasha.org/docs/classes.html). Using CINT (http://root.cern.ch/drupal/content/cint)
and the framework, a biology specific interpreter was developed which is referred as BOS Kernel
henceforth.

BOS Kernel is developed in C/C++ language with ~150,000 lines of code. Functionality and utility-
based abstraction led us to group all BioADTs into 8 major modules as described in Table 1.

Table 1: Core modules of BOS Kernel

Module Description

Inputs Input Module contains various BioADTs used for data sourcing from various
biological data formats such as Fasta, Genbank, PDB, Swissprot, Pubmed, EMBL,
DDBJ, SCOP, EST, ClustalW, MSF and others. Example BioADTs: BioFasta,
BioGenBank, BioEmbl, BioPdb, BioHkl, BioEst, BioScop, BioBlast and so on.

Sequence Sequence Module contains various sequence / string based BioADTs which use
DNA / Protein sequences. OOP principles such as abstraction, inheritance,
overloading have been extensively used to create relevant BioADTs. Example
BioADTs: BioSequence, BioDnaSequence, BioProteinSequence and soon.

Module Description

Structure Structure Module contains various structure specific BioADTs which use DNA /
RNA / Protein 3D structure information. Example BioADTs: BioPoint, BioAtom,
BioResidue, BioChain, BioProtein, BioWater and so on.

Algorithms Algorithms Module contains various algorithm implementations commonly used in
biological analysis. The effort has been to make the algorithms reusable and generic
which gives flexibility. The constructors are overloaded to accept various formats.
GOOBA is an acronym which stands for 'generic object-oriented biological
algorithms' is one of the sections found in 'BioBox' in 'BOS Editor'. The current
version the following algorithms - dotplot, global/local sequence alignment, protein
structure alignment, secondary structure prediction, secondary structure alignment,
gene prediction, restriction map analysis, overlap and repeat identification.
Example BioADTs: BioProteinSequenceGlobalAlignment, BioRestrictionMap,
BioProteinStructureAlignment, BioDnaSequenceLocalAlignment and so on.

Library Library Module is a unique set of BioADTs which are aimed at giving the researcher
an ability to write novel algorithms from first principles. Example BioADTs:
BioAminoAcidLibrary, BioNucleicAcidLibrary, BioSpaceGroupLibrary,
BioRestrictionEnzymeLibrary, BioElementLibrary, BioAtomLibrary,
BioStdCodonLibrary and so on.

System System Module contains BioADTs that enable the researcher to do system level
programming, especially the automation tasks such as searching, scanning the local
directories and files, connecting over the available network and downloading the
relevant files and other such tasks. The most commonly used BioADT is
BioDatabase which has methods such as getFiles(), get Sub Directories
WithFullPath(), removeDirectory() and so on.

Utilities Utility Module contains many general utility classes and functions. Example
BioADTs: BioMatrix, BioStatistics and so on.

Output Output Module contains BioADTs which are used for presentation such as
formating of data and the analysis results. Three output stream formats supported
currently are text, postscript and HTML. Example BioADTs: BioOutputStream,
BioHtml and BioPostScript.

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

59

This design enables systematic simulation of complex biological systems and their behaviour reusing
available BioADTs and / or defining new BioADTs. For example UML diagram (Figure 1) shows
inheritance pattern in Sequence module for different sequence data types.

BOS Editor

Most of the available biological libraries such as BioPERL, BioPython, are console based with the
exception of R/BioConductor which has graphical user interface (GUI). GUI provides several
advantages over console-based usage. BOS Editor is a GUI which helps the researcher to learn / write and
'run' the biological instructions rapidly with minimal errors. The features of the editor are described in
results section.

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

60

Figure 1: Inheritance UML diagram of BioSequence BioADT.

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

61

BioSequence is the parent sequence specific BioADT that has all the getters, setters, show and find
methods common to both DNA and protein sequence data such as getMutatedSequence(),
getNumberOfOccurrences(), findPattern() and others. BioDnaSequence and BioProteinSequence
BioADTs are derived from BioSequence. Since Fasta format can have both types of data, BioFasta is
derived from BioSequence unlike BioGenBank and other formats. BioGenBank, BioEmbl, BioDdbj
formats are derived from BioDnaSequence and BioSwissprot ADT is derived from BioProteinSequence.

Results and Discussion

As mentioned above there is a subtle difference between using OOP for biological data processing and
abstracting biology into relevant BioADT's using OOP. Our careful and in-depth study of this subtle
difference enabled us to design Bio-logical entities using their inter-relationships. This design
synchronizes with the natural thought process of a researcher and the instructions to be typed for getting
the results.

For example consider the pseudo-code:

BioProtein(). BioProteinChain().BioResidue().BioAtom().getBfactor()

BioMultipleGenBank(). BioGenBank().BioFTKMatPeptide().BioFTQEvidence().getEvidence()

This convergence of thought process and scripting reduces digression, providing more productive time
for analysis for the researcher.

Biological Abstraction

Since C++ supports procedural and OO paradigms, multiple inheritance, strict data typing and generic
programming, we could create the data model that almost followed the naturally observed biological
entity relationships. Biojava implemented similar syntax by using 'interfaces' to overcome the limitation
of multiple inheritance and other features inherent with Java programming language. The comparison
between BioJava, BioPython, BioPerl and others were discussed in earlier publications (Mangalam,
2002; Fourment and Gillings, 2008). The detailed comparison of the design principles between BOS and
other applications is beyond the scope of the current article. We highlight few features (described in Table
2) to emphasize, a) deeper layers of abstraction, b) biologically more relevant abstraction and c)
alternative methods of abstraction.

BOS Kernel

Careful and systematic abstraction resulted in the successful implementation of current version of BOS.
The current version of the Kernel has: a) Around 400 Biological Objects, b) Around 14000
methods/functions, c) 12 Algorithm implementations, d) 17 Database input formats, e) 3 Output formats,
f) 5 Biological Libraries g) Several sequence and structure specific objects, h) Statistics and matrix
functions and other miscellaneous classes and functions.

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

62

Table 2 : Feature comparison between Biojava and BOS-Kernel

Accessing
various biological
data formats

The primary mode of parsing
sequences from various sequence
data formats seems to be through a
common sequence utility class,
SeqIOTools, with various methods
such as readEmbl(..),read Swissprot
(..), readGenbank(..) and so on.

All biological formats are provided as
independent classes like BioGenbank,
BioSwissProt , BioEmbl . Separate
BioADTs are provided for multiple entry
formats as well, such as BioMultipleFasta,
BioMultipleGenBank, BioMultipleEmbl,
BioClustal, BioMsf etc.

Abstraction of a.
protein structure
domain

Ÿ PdbFileReader is a class which
reads a PDB file.

Ÿ PdbFileReader is composed of
Structure object.

Ÿ The primary mode of access to
information in a PDB is via
methods of PdbFileReader and
Structure object such as
getStructure(. .) , getId(. .) ,
findChain(..) etc. User can
access data fields of PDB records
(like header, dbref, compounds
etc.) and entity information and
coordinate data types like chain,
residue (group), atom etc.

Independent
usage of
BioADTs

Ÿ The user depends primarily on
the methods provided by
P d b F i l e R e a d e r s u c h a s
PdbFileReader().getStructure()
.getChain().getSeqResSequence
() , e tc . To use ge t Id () ,
PdbFileReader has to store the
entire PDB file in memory
making it memory intensive.

Design features BioJava

Ÿ All the BioADTs can be independently
used for analysis. For example,
BioPdbHeader can be used to parse the
PDB file. Only the HEADER line of
PDB is read into Memory and this
enables us to access PDB Id using
method getPdbId() which is both faster
and memory efficient.

Ÿ Similarly, BioSecondaryStructure or
B i o P d b S e q r e s c a n b e u s e d
independently in case user intends to
work only on the secondary structure or
sequence information of the PDB file
respectively.

Ÿ Protein domain is abstracted into
general, structure specific and
coordinates information.

Ÿ BioPdb is the derived class which
multiply inherits all classes which are
i n d e p e n d e n t a n d r e p r e s e n t
records/fields in PDB file (HEADER,
COMPND, CRYST1, SOURCE,
REMARK and others).

Ÿ A biologically meaningful derived
class, BioSecondaryStructure class, is
implemented which is composed of
B i o P d b H e l i x , B i o P d b T u r n ,
BioPdbSheet. BioSecondaryStructure
class is one of the parent classes of
BioPdb class, giving access to
secondary structure elements via
g e t H e l i x C o o r d i n a t e s (. .) ,
getStrandSequence(…), getTurn(..)
etc., methods.

Ÿ The coordinate information is parsed
and populates BioProtein composed of
BioProteinChains and BioWater.

BOS-Kernel

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

63

BOS Editor

Since C++/ Java/ Javascript/ PHP syntax is the most accepted/ adopted syntax and closely resembles
biological abstraction, it was a strategic decision to retain the same syntax that enabled using C++ in bio-
scripting for the first time, alternative to PERL and Python based scripting.

The researcher need not digress from his/ her core competence and invest resources to learn about source
code compilation, linking and other details specific to software build system configurations. The
researcher is forced to digress as it is essential to have working knowledge about compilation and linking
in order to use Biological APIs and libraries. However, BOS expects the user/researcher to write the
instructions and 'run' (F5) the code to instantaneously see the results. This substantially reduces the time
spent by researcher.

The programming environment provides the common features of an editor (Figure 2). For example, File
options such as 'New project', 'New file', 'Open', 'Close', 'Quit' and others; 'Edit' options such as 'Cut',
'Copy' & 'Paste', 'Find & Replace' and others. Table 3 shows the different components of the editor.
Besides the common editor features, there are bioinformatics specific features such as Substitution
matrix dialog box, in View Options, that provides the researcher with an easy way of creating and using
one's own customized substitution matrices which are known to significantly influence the pair wise
alignment of proteins as well as DNA sequences.

Figure 2: BOS Editor illustrating various components

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

64

The researcher can also use the short-cut key combinations to write faster code. A 'dot' operator and
'cntrl'&'alt' key combination is associated with 'dynamic intelligent' help. On using the short-cut, list of
all the associated methods for particular BioADT under use pops up, enables selection and auto-
completes any partial instruction at the cursor position. This greatly reduces the learning curve for BOS
which eliminates the need to memorize the various objects, methods and functions.

A project can be sub-divided into smaller tasks and tested independently. The researcher can run one task
at a time or all at once. Similarly, one can create many projects and run them simultaneously also.

Table 3: Features provided by BOS Editor

Example illustrations

The following simple BOS scripts provide the necessary code to understand the biological programming
paradigm and implement one's own query using BOS.

Object based Biological Scripting

A script to access structural information from a PDB file by using biological entities like protein, chain,
residue, atom etc.

S. No Editor Compartment Feature Description

1 Menu Bar New project, new file, Open, Cut, Copy, Paste, Find, replace,
 run, help, view

2 Tool Bar Common icons for creating new or opening files

3 Message Box This box shows the error messages if any and shows method
 prototypes to avoid syntax errors

4 Status Bar Gives the cursor position and scope of variable and instructions
 being written

5 Working Area The editor where instructions are written for execution

6 Bio-Box Provides access to the various BioADTs presented in a modular
 way. The user interface is intuitive and self-explanatory dialogue
 popup boxes.

7 BOS-Box A interface for learning generic C++/Java programming syntax
 for beginners

8 Bio-Global Functions A set of globally available biologically useful functions such as
 functions to calculate torsion angle, angle, distance, direction
 cosines and others

9 Math & miscellaneous A set of commonly used mathematical and system wide
 functions

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

65

BioProtein biop("c:/BOS_Scripts/BOS_Inputs/pdb/pdb3APP.ent");
cout << “Number of protein chains: ”<< biop.getNumberOfProteinChains()<< endl;
//Displays the number of chains

BioProteinChain bcp = biop.getProteinChain(0); //get first protein chain from PDB file
for(int i = 0; i < bpc.getNumberOfResidues(); i++)

{
 cout << i+1 << ”\t” << bpc.getResidue(i).getAtom("CA”).getBfactor() << endl;
 //Prints Bfactor of each alpha carbon atom in all residues of first protein chain

}
BioGetChar();
Biologically Intuitive
Example of intuitive programming, demonstrated with a code to extract gene locus names and sequence
of human entries from multi-entry GenBank file.

BioMultipleGenBank b("c:/BOS_Scripts/BOS_Inputs/GBK/p53.mgbk");
for(int i =0; i < b.getNumberOfEntries(); i++)

{
 //Function getEntry(index) returns a single gbk entry from multiple gbk file
 if(b.getEntry(i).findOrganism("Homo sapiens")) //check the organism name

����{� cout << “Locus: ”<< b.getEntry(i).getLocusName()<<endl;

cout << b.getEntry(i).getSequence() << endl;

����}
}
BioGetChar();

Multiple Data Sourcing

A script demonstrating use of many data types (formats) in a single program.

BioFasta p53gene(“p53gene.txt”); // fasta format file as input
BioFasta newGene(“putative gene”,“GCTAGCATGCGTGATCGGATCGGTGTAC”);
//Overloaded constructor of BioFasta, taking gene name and sequence as parameters

BioGenBank p53gene2(“p53gene.gbk”); //genbank format file as input

BioPdb p53protein_str(“p53str.pdb”); //PDB structure format file as input

BioSwissProt p53protein_seq(“p53pro_seq.swiss”);//swissprot Sequence file

BioPubmed p53_literature(“p53_lit.txt”); //Pubmed or Medine format file as input

BioPoint p1(2.3, 3.4, 5.4), p2(x,y,z); //Point with 3 co-ordinates in space

BioWater wat(“pdb2apr.ent”); //'wat' holds the water information from a PDB file

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

66

BioMultipleEmbl all_seq_env(“hiv_env_gene.txt”); // multiple Embl format file
BioGetChar();

Using Biological Libraries

Amino acid library stores basic information about each of the 20 amino acids, such as molecular weight,
number of atoms, accessible surface area, hydrophobicity, dc volume and so on.

string am = “CYS”; //Amino acid cystein

BioAminoAcidLibrary::initialised(); //AminoAcid Library is ready for use
cout << “AA code” << “\t” << “SurfArea” << “\t” << “CFsheetProp” << endl;
cout << BioAminoAcidLibrary::AminoAcid[am].getSingleLetterCode() << “\t”
<< BioAminoAcidLibrary::AminoAcid[am].getAccessibleSurfaceArea() << “\t”
<< BioAminoAcidLibrary::AminoAcid[am].getCFSheetPropensity() << endl;
//Prints a single letter code (i.e. 'C'), accessible surface is and chou-fasman sheet propensity of Cystein
BioGetChar();

Using Algorithms

One of the most common tasks in Bioinformatics is to do an all-to-all alignment of complete gene
sequences or protein sequences provided, in general, in multi-entry FASTA format. This example
demonstrates how to use an algorithm BioADT such as BioProteinSequenceGlobalAlignment in
conjunction with other BioADTs and unique methods such as getIdentity().

BioMultipleFasta spfas("asp.mfaa");
cout<<"The Number of Sequences : "<<aspfas.getNumberOfEntries()<<endl;
for (int i = 0; j < aspfas.getNumberOfEntries(); i++)

{
 BioFasta entry1 = aspfas.getEntry(i),
 for(int j = 0; j < aspfas.getNumberOfEntries(); j++)

���{
� if(i!=j)

� {
����� � BioFasta entry2 = aspfas.getEntry(j);
����� � BioProteinSequenceGlobalAlignment pgl(entry1, entry2,"BLOSUM62");
����� � if(pgl.getIdentity() > 80.0) //Checks if %Identity greater than 80

{
c o u t < < " P e r c e n t I d e n t i t y : " < < p g l . g e t I d e n t i t y () < < e n d l ;

pgl.showAlignment(); //Display alignment on standard output

���� � }
� ���}
�� }
}
 BioGetChar();

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

67

Data Representation

Currently BOS supports text, HTML and PostScript Outputs. The code below displays Ramachandran
Plot of a given PDB file in the PostScript format (shown in Figure 3).

BioPostScript ps("RamachandranPlot.PS");

BioProteinChain bc("c:/BOS_Scripts/BOS_Inputs/pdb/pdb3APP.ent");

bc.setRamaPlotColorSpec(255,0,0,250,250,0,0,0,250);

bc.showRamaChandranPlot(ps,FILLED_TRIANGLE);

ps.setFontSize(15);

string str1 = toString(int(bc.getNumberOfResidues()));

ps.setText("Number of Residues = ",80,140);

ps.setText(str1,300,140);

string str2 = toString(int(bc.getNumberOfAtoms()));

ps.setText("Number of Atoms = ",80,120);

ps.setText(str2,300,120);

ps.setAlign("CENTER");

ps.setText("RamaChandranPlot of 3APP Molecule",300,175);
BioGetChar();

Figure 3: Post Script format output (Ramachandran plot) of the script

Copyright© 2019 IMSEC

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

68

Conclusion and future scope

Current version of BOS attempts to provide a comprehensive platform for analysis which includes
sequence domain, structure domain and literature search capabilities without losing the data/ workflow
features. With these above-mentioned features, BOS provides an efficient biologist friendly
programming environment for biological data analysis.

The download version (available at http://www.biobhasha.org) supports sequence alignment (global,
local, repeat, overlap), structure alignment, dot-plot, restriction map, protein secondary structure
prediction and literature mining. It supports Fasta, Genbank, Embl, DDBJ, Swissprot, PDB, Pubmed and
many such database formats and strictly implemented the controlled vocabulary recommendations of
International Nucleotide Sequence Database Collaboration (INSDC) (http://www.insdc.org).

As can be seen the development roadmap of BOS is complex, multi-directional, resource intensive and is
work-in-progress. The current design enables future versions to become more biologist-friendly and
integrative. The design implementation makes flexibility, customizability and extensibility, inherent,
independent and inclusive of futuristic as well as unforeseen design requirements. Various microarray
(affymetrix, illumina, agilent), next generation sequencing (NGS) data formats (FASTQ, SCARF) and
BioHMM - generic BioADT are currently being implemented and tested to become part of next major
release. In addition, efforts are being put to make the current interface (vocabulary [functionalities])
standards compliant with Gene Ontology (GO) (Ashburner et al., 2000), Systems Biology Mark-up
Language (SBML) (Hucka et al., 2018) and others which will enable seamless integration. The design is
being developed to port it and take advantage of cloud computing.

References

Néron, B., Ménager, H., Maufrais, C., Joly, N., Maupetit, J., Letort, S. et al. 2009. Mobyle: a new full web
bioinformatics framework. Bioinformatics, 25(22): 3005-3011.

Richter, B. and Sexton, D. 2009. Managing and Analyzing Next-Generation Sequence Data. PLoS
Comput Biol. 5(6), e1000369.

Hull, D., Wolstencroft, K., Stevens, R. et al. 2006. Taverna: a tool for building and running workflows of
services. Nucleic Acids Res. 34,Web Server issue, 729-732.

Winn, M.D. et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol
Crystallogr. D67, 235-242.

Mangalam. H. 2002. The Bio-* toolkits – a brief overview. Briefings in Bioinformatics. 3(3) 296–302.

Hucka, M., Bergmann, F.T., Dräger, A., Hoops, S., Keating, S.M., Le Novère, N., Myers, C.J., Olivier,
B.G., Sahle, S., Schaff, J.C., Smith, L.P., Waltemath, D., Wilkinson, D.J. 2018. The Systems Biology
Markup Language (SBML): Language Specification for Level 3 Version 2 Core. J Integr Bioinform,
15(1):266.

Vivechan International Journal of Research, Vol. 10, Issue 1, 2019 ISSN No. 0976-8211

Copyright© 2019 IMSEC 69

Dutheil, J., Gaillard, S., Bazin, E. et al. 2006. Bio++: a set of C++ libraries for sequence analysis,
phylogenetics, molecular evolution and population genetics. BMC Bioinformatics, 7:188.

Stajich, J. et al. 2002. The Bioperl Toolkit: Perl Modules for the Life Sciences. Genome Res. 12, 1611-
1618.
Okonechnikov, K., Golosova, O., Fursov, M. et al. 2012. Unipro UGENE: a unified bioinformatics
toolkit. Bioinformatics. 28 (8);1166-1167.

Ashburner, M. et al. 2000. Gene Ontology: tool for the unification of biology. Nat Genet. 25(1), 25–29.

Fayad, M. et al. 1999. Building Application Frameworks. Addison-Wesley Pub Co, 1st edition.

Fourment M. and Gillings. M. 2008. A comparison of common programming languages used in
bioinformatics. BMC Bioinformatics, 9:82.

Galperin, M. and Fernández-Suárez, X. 2012. The 2012 Nucleic Acids Research Database Issue and the
online Molecular Biology Database Collection. Nucleic Acids Res. 40 (D1), D1-D8.

Larkin, et al. M. 2007. ClustalW and ClustalX version 2. Bioinformatics, 23, 2947-2948.

Cock, P., Antao, T., Chang, J. et al. 2009. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics, 25(11), 1422-1423.

Kraulis, P. 1991. MOLSCRIPT: A program to produce both detailed and schematic plots of protein
structures. J. Appl. Crystallogr., 24, 946-950.

Rice, P., Longden, I., Bleasby, A. 2000. EMBOSS: The European Molecular Biology Open Software
Suite. Trends Genet. 16, (6) pp 276-277.

Holland, R., Down, T., Pocock, M. et al. 2008. BioJava: an open-source framework for bioinformatics.
Bioinformatics, 24(18), 2096-2097.

Russell R. and Barton. G. 1992. Multiple protein sequence alignment from tertiary structure comparison:
assignment of global and residue confidence levels. Proteins. 14,309-23.

